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1. Introduction

Let Fq be a finite field with q elements. Let F be a function field of transcendence 
degree 1 over Fq; we assume that Fq is algebraically closed in F . Fix a place ∞ of F . Let

A = {a ∈ F | ordv(a) ≥ 0 for all places v �= ∞}

be the ring of elements of F regular outside of ∞. On A, the degree function deg: A → Z

is defined by deg(a) = logq #A/(a). We use “prime”, “nonzero prime ideal”, and “place” 
of A as synonyms. Given a prime p of A, we denote Fp = A/p. Let k ∼= Fqn be a finite 
extension of Fp. We consider k as an A-field via γ : A → A/p ↪→ k.

Let τ be the Frobenius automorphism of k relative to Fq, that is, the map α �→ αq. 
Let k{τ} be the noncommutative ring of polynomials in τ with coefficients in k and 
commutation rule τα = αqτ , α ∈ k. A Drinfeld module of rank r ≥ 1 over k is a ring 
homomorphism φ : A → k{τ}, a �→ φa, such that

φa = γ(a) + g1(a)τ + · · · + gn(a)τn, n = r · deg(a).

An isogeny u : φ → ψ between two Drinfeld modules over k is a nonzero element u ∈ k{τ}
such that uφa = ψau for all a ∈ A.

The endomorphism ring E := Endk(φ) of φ consists of the zero map and all isogenies 
φ → φ; it is the centralizer of φ(A) in k{τ}. It is known that E is a projective finitely 
generated A-module with r ≤ rankA E ≤ r2. We introduce a special element, π = τn, 
the so-called Frobenius of k. Note that π lies in the center of k{τ}, and hence belongs 
to E .

Isogenies define an equivalence relation on the set of isomorphism classes of Drinfeld 
modules over k. The isogeny class of φ is determined by the minimal polynomial of π
over F = φ(F ), cf. [14, Theorem 3.5]. Since the properties of these polynomials are well 
understood, it is known how to classify Drinfeld modules over finite fields up to isogeny.

In this article, we investigate the isomorphism classes within a fixed isogeny class. 
This is an important and difficult question in the theory of Drinfeld modules, which can 
be approached from different viewpoints, cf. [23,15]. Our approach is inspired by the 
work of Waterhouse [28] in the case of abelian varieties over finite fields and is partly 
aimed at producing efficient algorithms for explicitly computing a representative of each 
isomorphism class. We refer to Section 7 for a more in-depth comparison of our results 
to known results for abelian varieties.

When E is commutative, the endomorphism ring of a Drinfeld module isogenous to φ
is an A-order in F (π) containing A[π]. We start by investigating the natural question of 
when A[π] itself is an endomorphism ring of a Drinfeld module isogenous to φ. We prove 
the following:
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Theorem A. Let φ be a Drinfeld module over k such that Endk(φ) is commutative. Then 
A[π] is the endomorphism ring of a Drinfeld module isogenous to φ if and only if either 
φ is ordinary or k = Fp.

Next, we study isogenies from φ to other Drinfeld modules using the ideals of E . 
Let I � E be a nonzero ideal. Since k{τ} has a right division algorithm, there exists 
uI ∈ k{τ} such that k{τ}I = k{τ}uI . This element defines an isogeny uI : φ → ψ, where 
ψ is the Drinfeld module determined by ψa = uIφau

−1
I for all a ∈ A; we denote ψ = I ∗φ. 

The map I �→ I ∗ φ induces a map S from the linear equivalences classes of ideals of E
to the isomorphism classes of Drinfeld modules isogenous to φ. Generally, S is neither 
injective nor surjective.

It was observed by Waterhouse [28] in the setting of abelian varieties that S is injec-
tive when restricted to ideals of a special type, called kernel ideals. Kernel ideals were 
introduced in the context of Drinfeld modules by Yu [29]. In Sections 3 and 4, we re-
visit Yu’s definition, give two other equivalent definitions, and prove several general facts 
about kernel ideals. We also give an explicit example (Example 3.10) of a rank 3 Drinfeld 
module φ and an ideal I � Endk(φ) which is not kernel; as far as we know, this is the 
first such explicit example in the literature.

In general Endk(I ∗ φ) ⊇ uIOIu
−1
I

∼= OI , where

OI := {g ∈ F (π) | Ig ⊆ I}.

(Equality holds when I is a kernel ideal; cf. Lemma 4.2.) Note that OI is an overorder 
of E , so S can be surjective only when E is the smallest order among the endomorphism 
rings of Drinfeld modules isogenous to φ. When E is a Gorenstein ring, we prove that any 
isogeny φ → ψ such that Endk(ψ) ∼= OI for some (necessarily kernel) ideal I � E arises 
from the map S via I �→ I ∗φ = ψ. In other words, when E is Gorenstein, the image of S
is the set of isomorphism classes in the isogeny class of φ whose endomorphism rings are 
overorders of E . Since A[π] is a Gorenstein ring, we arrive at the following:

Theorem B. Assume that either k = Fp or the isogeny class that we consider is ordinary, 
so that there is a Drinfeld module φ with Endk(φ) = A[π]. Then the map I �→ I ∗φ from 
the linear equivalences classes of ideals of A[π] to the isomorphism classes of Drinfeld 
modules isogenous to φ is a bijection.

In [24], an algorithm is presented for computing the ideal class monoid of an order 
in a number field. We have adapted that algorithm to orders in function fields. Since 
computing I ∗ φ for a given ideal I � E is fairly straightforward, Theorem B combined 
with this algorithm provides an efficient method for computing explicit representatives 
of isomorphism classes of all Drinfeld modules isogenous to φ such that Endk(φ) ∼=
A[π]. Section 6 discusses the details of this algorithm and provides an explicit example 
computed using the algorithm implemented in Magma [6], see [19].
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Let us mention that Assong [3] has described a brute-force algorithm to list isomor-
phism classes, based on a theoretical classification in terms of j-invariants and “fine 
isomorphy invariants”, and implemented this for certain examples of isogeny classes of 
Drinfeld modules of rank 3. Our methods involve fractional ideals in endomorphism 
rings rather than invariants and explicit expressions for the coefficients of the Drinfeld 
module.

The outline of the paper is as follows. Section 2 contains our analysis of local max-
imality of A[π] at π, including a key result (Theorem 2.5) for the proof of Theorem A. 
Section 3 gives the definitions of kernel ideals and proves their equivalence, and Section 4
gives properties of kernel ideals and proves that every ideal is a kernel ideal when E is 
Gorenstein (Proposition 4.5). Section 5 contains our main results: we find which endo-
morphism rings can occur in a fixed isogeny class (Proposition 5.1), study the injectivity 
and surjectivity of the map I �→ I ∗ φ (Theorem 5.4), and prove when A[π] occurs as an 
endomorphism ring (Corollary 5.3), to obtain Theorem B (cf. Corollary 5.5). Section 6
discusses the algorithm based on Corollary 5.5 for computing representatives of the iso-
morphism classes in a given isogeny class, and the implementation of that algorithm in
Magma. Finally, Section 7 contains a comparison between the results obtained in this 
paper and the results from the literature ([28,10,7]) on abelian varieties over finite fields.
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2. Local maximality at π of the Frobenius order

As in the introduction, let F be a function field of transcendence degree 1 over Fq (in 
which Fq is algebraically closed), let ∞ be a fixed place of F , and let

A = {a ∈ F | ordv(a) ≥ 0 for all places v �= ∞}.

For a ∈ A, we define deg(a) = logq #A/(a). Let k = Fqn be a finite A-field, i.e., a field 
equipped with a homomorphism γ : A → k. Let p � A be the kernel of γ. Then p is a 
maximal ideal such that Fp := A/p ∼= Fqd is a subfield of Fqn . We call d the degree of p; 
note that d divides n.
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Let φ : A → k{τ} be a Drinfeld module of rank r, and let π = τn. The results about 
the endomorphism algebra of φ that we use in this section are well-known and can be 
found, for example, in [11,14,16,17,25].

Let K := Fq(π) be the fraction field of Fq[π] ⊆ k{τ} and define

k(τ) = k{τ} ⊗Fq[π] K.

Then k(τ) is a central division algebra over K of dimension n2, split at all places of K
except at (π) and (1/π), where its invariants are 1/n and −1/n, respectively. Extend φ

to an embedding φ : F → k(τ). Then

E := Endk(φ) = Centk{τ}(φ(A)),

D := Endk(φ) ⊗φ(A) φ(F ) = Centk(τ)(φ(F )),

where CentR(S) = {x ∈ R | xs = sx for all s ∈ S} denotes the centralizer of a subset S

of a ring R. To simplify the notation, we will denote φ(A) by A and φ(F ) by F , with φ
being fixed. Let

A′ := Fq[π], F̃ := F (π).

Let B be the integral closure of A in F̃ . There is a unique place p̃ in F̃ over the place (π)
of K, and this p̃ lies above the place p of F ; see [16, Theorem 3.8]. Let

F̃p̃ := F̃ ⊗K Fq((π))

be the completion of F̃ at p̃, and let Bp̃ be the ring of integers of F̃p̃.

Definition 2.1. Given an A-order R in B containing π, let

Rp̃ := R⊗Fq [π] Fq�π� ⊆ Bp̃.

We say that R is locally maximal at π if Rp̃ = Bp̃; cf. [1, Definition 3.1].

Remark 2.2.

(1) For an A-order R in B, its conductor is defined as

C = {c ∈ F̃ | cB ⊆ R}.

One can show that C = AnnR(B/R) and C is the largest ideal of B that is contained 
in R. One can moreover show that R is locally maximal at π if and only if C is rela-
tively prime to p̃; see [8, Corollary 6.2]. This is a weaker condition than requiring C

to be relatively prime to p; see Example 2.17.
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(2) Suppose E is commutative. Then E can be considered as an A′-order in F̃ . It is 
observed in [29, p. 164] and [1, p. 514] that E is locally maximal at π. Therefore, for 
A[π] to be an endomorphism ring of a Drinfeld module isogenous to φ it is necessary 
for A[π] to be locally maximal at π. We investigate this condition in this section; 
later we will show that it is also sufficient; cf. Proposition 5.1.

Lemma 2.3. The following hold:

(1) The completion Ap is a subring of A[π]p̃.
(2) The ideal M of A[π]p̃ generated by π and p is maximal, and A[π]p̃/M ∼= Fp.

Proof. Note that A[π]p̃ is an order in Bp̃ (because A[π] is an order in B). Hence A[π]p̃
is open and closed with respect to the p̃-adic topology on Bp̃. In particular, A[π]p̃ is 
complete. Now the topology on A induced by the embedding A → A[π] → Bp̃ is the 
p-adic topology. Hence A ↪→ Bp̃ extends to an embedding Ap ↪→ Bp̃. Since A[π]p̃ is 
complete, the image of Ap lies in A[π]p̃. This proves (1). Next, note that Bp̃/(π) is a 
finite local ring, and the natural homomorphism

A[π]p̃ → Bp̃/(π)

factors through A/ps for some s ≥ 1. Thus, A[π]p̃/(π, p) ∼= Fp. This proves (2). �
Let

[F̃p̃ : Kπ] = eK · fK ,

[F̃p̃ : Fp] = eF · fF ,

where Fp (resp. Kπ) denotes the completion of F (resp. K) at p (resp. (π)), and where e

and f denote the ramification index and the residue degree of the corresponding exten-
sion, respectively.

Proposition 2.4. A[π] is locally maximal at π if and only if one of the following holds:

• fF = 1 and eF = 1;
• fF = 1 and eK = 1.

Proof. Let ordp̃ be the normalized valuation on F̃ corresponding to the place p̃. Then

eK = ordp̃(π),

eF = ordp̃(p).

Suppose that A[π]p̃ = Bp̃. Then, using the notation of Lemma 2.3, M = p̃ and 
Fp̃ := Bp̃/p̃ = A[π]p̃/M = Fp. Since π and p generate M, at least one of them must 
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have ordp̃ equal to 1. Hence, either eK = 1 or eF = 1. Next, fF , by definition, is the 
degree of the extension Fp̃/Fp. Hence fF = 1.

Conversely, suppose that one of the given conditions holds. Then the residue field 
of Bp̃ is Fp and either p or π is a uniformizer of Bp̃. Then Bp̃ = Fp�p� or Bp̃ = Fp�π�, 
by the structure theorem of local fields of positive characteristic. On the other hand, by 
Lemma 2.3,

Fp ⊆ Ap
∼= Fp�p� ⊆ A[π]p̃,

and p, π ∈ A[π]p̃. Hence Bp̃ ⊆ A[π]p̃, which implies that Bp̃ = A[π]p̃. �
For f =

∑n
i=h aiτ

i ∈ k{τ} with ah �= 0, define ht(f) = h. There is an integer 
1 ≤ H(φ) ≤ r, called the height of φ, such that

ht(φa) = H(φ) · ordp(a) · d

for all 0 �= a ∈ A (cf. [17, Lemma 4.5.6]).

Theorem 2.5. Let H be the height of φ. Then

⌈ n

H · d
⌉
≤ [F̃ : K]

d
,

with equality if and only if A[π] is locally maximal at π.

Proof. The following equalities hold:

[F̃ : F ]
[F̃ : K]

= r

n
(see [16, (3.7)]),

[F̃ : K] = eK · fK (because p̃ is the only place of F̃ over (π)),

fK = fF · d (see [25, (4.1.6)]).

On the other hand, by [16, p. 75],

H = r

[F̃ : F ]
[F̃p̃ : Fp]. (1)

Hence

H = n

[F̃ : K]
eF fF = neF fF

eKfK
= n

d

eF
eK

.

This implies that

n = eK
.

H · d eF
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On the other hand,

[F̃ : K]
d

= eKfK
d

= eK · fF .

Thus, the inequality of the theorem is equivalent to⌈
eK
eF

⌉
≤ eK · fF .

Since eK , eF , fF are positive integers, the above inequality always holds, with equality 
if and only if fF = 1 and either eK = 1 or eF = 1. Now the theorem follows from 
Proposition 2.4. �
Remark 2.6. The advantage of having the inequality of Theorem 2.5, rather than the 
statement of Proposition 2.4, is that instead of computing each of eK , eF , fF individually 
it combines these numbers into quantities that are easier to compute.

Corollary 2.7. If H ≤ r/[F̃ : F ], then A[π] is locally maximal at π. In particular, if φ is 
ordinary, i.e., H = 1, then A[π] is locally maximal at π.

Proof. Since r/[F̃ : F ] = n/[F̃ : K], the assumption is equivalent to n/H ≥ [F̃ : K], 
which implies that equality in Theorem 2.5 holds. �
Corollary 2.8. If k = Fp, i.e., if d = n, then A[π] is locally maximal at π.

Proof. Let Pφ(x) be the characteristic polynomial of π acting on the Tate module Tl(φ)
of φ for some prime l �= p. Then Pφ(x) is a monic polynomial in A[x] of degree r whose 
coefficients do not depend on l; moreover, if Mφ(x) is the minimal polynomial of π
over A, then Pφ(x) = Mφ(x)r/[F̃ :F ]; see [14, Lemma 3.3]. Denote the constant term of 
Pφ(x) by a0 = Pφ(0). It is known that deg(a0) = n; see [17, Theorem 4.12.8]. Thus, by 
our assumption, deg(a0) = d. On the other hand, it is known that a0 ∈ p, so deg(a0) =
ordp(a0) ·d; see [2, Theorem 4.2]. We see that ordp(a0) = 1. Since a0 = Mφ(0)r/[F̃ :F ], we 
also have ordp(a0) ≥ r/[F̃ : F ]. Therefore, [F̃ : F ] = r. But [F̃ : F ] = r is equivalent to 
[F̃ : K] = n, so [F̃ : K] = d. Thus, the inequality of Theorem 2.5 becomes

1 =
⌈

1
H

⌉
≤ [F̃ : K]

d
= 1,

so it is an equality. �
Corollary 2.9. Assume Endk(φ) is commutative. Then A[π] is locally maximal at π if 
and only if either φ is ordinary or k = Fp.
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Proof. By [14, Theorem 2.9], Endk(φ) is commutative if and only if [F̃ : F ] = r. Now, 
as in the previous proof, [F̃ : K] = n. The inequality of Theorem 2.5 becomes

⌈ n

Hd

⌉
≤ n

d
.

Since n/d is a positive integer, equality holds if and only if either H = 1 or n = d. �
In all examples below, we let A = Fq[T ] and t := γ(T ). We also denote the monic 

polynomial in T generating the ideal p by the same symbol p.

Example 2.10. Let p = T , r = 2, and n = 3. Let φT = τ2, so φ is supersingular. 
In this case, the characteristic polynomial of the Frobenius is Pπ(x) = x2 − T 3 (since 
π2 = τ6 = φ3

T ), so [F̃ : F ] = 2. Thus, [F̃ : K] = 3. Since H = 2 and d = 1, the inequality 
of Theorem 2.5 becomes strict:

2 =
⌈

3
2 · 1

⌉
<

3
1 = 3.

Thus, A[π] is not maximal at π. One can also see that A[π] is not maximal at π by directly 
computing A[π]p̃. Indeed, A[π] = A[T

√
T ] and B = A[

√
T ]. Since 

√
T is the unique prime 

over T , A[π]p̃ = AT [T
√
T ] �= AT [

√
T ] = Bp̃. Also, note that Endk(φ) = Fq[τ ] ∼= A[

√
T ]

is the maximal A-order in F̃ .

Example 2.11. Suppose n = 6 and d = 2. Note that [F̃ : K] is divisible by d and 
divides n, (since r/[F̃ : F ] = n/[F̃ : K] and [F̃ : F ] divides r). Hence, [F̃ : K] = 2 or 6. 
The inequality of the theorem becomes

⌈
3
H

⌉
≤ [F̃ : K]

2 .

Hence A[π] is locally maximal at π if and only if either H = 1 or [F̃ : K] = 2.
For example, when q = 3, p = T 2 + T + 2, φT = t + τ4, we calculate that φp =

(2t + 1)τ2 + τ8, which tells us that H = 2. We also calculate the minimal polynomial 
for T over K, which is given by m̃T (x) = x6 + (π2 + 1)x3 + (π4 − π2 + 2). (The minimal 
polynomial m̃T (x) can be obtained from the minimal polynomial Mφ(x) of π over F by 
viewing Mφ(π) as a polynomial in T with coefficients in Fq[π]; see [25, Lemma 4.3.1].) 
Hence, [F̃ : K] = 6, so A[π] is not locally maximal at π.

Example 2.12. Suppose q = 3, n = 8, and p = T 2 + T + 2. Let

φT = t + τ + (2t + 1)τ2 + 2τ3 + τ4.
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Then, H = 2 and m̃T (x) = x4 +2x3 +2x2 +(2π+1)x +π2 +π+1, so [F̃ : K] = 4. Thus,

n

Hd
= 2 = [F̃ : K]

d
,

so equality in Theorem 2.5 holds. In this case, A[π] is locally maximal at π.

The next four examples show that the quantities in Proposition 2.4 are essentially 
independent of each other.

Example 2.13 (Local maximality despite eK �= 1). Let q = 3, p = T 2+T +2, and k = Fq4 . 
Let φT = t + τ2. By computation, we see that H = 1 and the minimal polynomial for T
over K is given by m̃T (x) = x4 − x3 + (π + 2)x2 + (π + 1)x + π2 + 1. In particular, 
n/(Hd) = 2 and [F̃ : K]/d = 2. Therefore, A[π] is locally maximal at π.

Notice that eK/eF = 2 and eKfF = 2 imply that eK = 2, eF = 1, fF = 1, and 
fK = 2.

Example 2.14 (Local maximality despite eF �= 1). Let q = 3, p = T 2+T +2, and k = Fq4 . 
Let φT = t + (t + 1)τ + (t + 2)τ2 + τ3. By computation, we see that H = 3 and the 
minimal polynomial for T over K is given by m̃T (x) = x2 + x + 2π3 + 2. In particular, 
n/(Hd) = 1/3 and [F̃ : K]/d = 1. Therefore, A[π] is locally maximal at π.

Notice that eK/eF = 1/3 and eKfF = 2 imply that eK = 1, eF = 3, fF = 1, and 
fK = 2.

Example 2.15 (Not locally maximal despite fF = 1). Let q = 3, p = T 2 + T + 2, and 
k = Fq6 . Let φT = t + τ + (2t + 1)τ2. By computation, we see that H = 2 and the 
minimal polynomial for T over K is given by m̃T (x) = x6 + x3 + π2 + 2. In particular, 
n/(Hd) = 3/2 and [F̃ : K]/d = 3. Therefore, A[π] is not locally maximal at π.

Notice that eK/eF = 3/2 and eKfF = 3 imply that eK = 3, eF = 2, fF = 1, and 
fK = 2.

Example 2.16 (Not locally maximal despite eF = eK = 1). Assume d is odd, q is odd, 
and n/d = [k : Fp] = 2. Then there is a supersingular Drinfeld module of rank 2 over k

whose minimal polynomial of π is Mφ(x) = x2 + cp + c′p2, where c, c′ ∈ F×
q are such 

that c2 − 4c′ is not a square in F×
q ; see [25, Example 4.3.6]. In this case, p remains inert 

in F̃ , so eF = 1 and fF = 2. Since n/Hd = eK/eF and H = 2, we see that eK = 1.

We conclude this section by pointing out that A[π] might be locally maximal at π

without being locally maximal at the other primes of F̃ over p. The next example demon-
strates this phenomenon.

Example 2.17. Let q = 3, p = T 2 + T + 2, and n = 6. Let φT = t + τ + τ3. Notice that 
φp = τ2 + 2τ4 + τ6, so H(φ) = 1, i.e., φ is ordinary. By Corollary 2.7, A[π] is locally 
maximal at π.
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Since φ is ordinary, we have A[π] ⊆ E ⊆ B ⊂ F̃ (the fact that E is an A-order in F̃
follows from (1)). Let FittA(E/A[π]) denote the Fitting ideal of E/A[π], and disc(A[π])
(resp. disc(E)) denote the discriminant of A[π] (resp. the discriminant of E). Then (cf. 
[26, p. 49])

disc(A[π]) = FittA(E/A[π])2 · disc(E).

The minimal polynomial of π is Mφ(x) = x3+2x2+x +2p3, so disc(A[π]) = p3. Therefore, 
either E = A[π] or FittA(E/A[π]) = p.

Note that Mφ(x) ≡ x(x +1)2 modulo p. Let mp(x) be the minimal polynomial over A/p

of π acting on φ[p] ∼= (A/p)2. Then mp(x) must divide x(x + 1)2. In fact, mp(x) must 
divide either (x + 1) or (x + 1)2 since ker(π) = 0. Suppose u ∈ E is such that pu ∈
A[π]. Then, u = g(π)/p for some g with deg g(x) < 3, and g(π) acts as zero on φ[p]. 
Furthermore, since φp divides g(π) in k{τ}, we must have ht(g(π)) ≥ 2. Thus, x divides 
g(x) modulo p. Since the minimal polynomial of π acting on φ[p] must divide both mp(x)
and g(x) modulo p, it follows that

g(x) ≡ c · x(x + 1) (mod p) for some c ∈ F×
q .

On the other hand, by the division algorithm, we compute that

π(π + 1)
p

= τ4 + τ6.

Thus, the p-torsion of E/A[π] is the 1-dimensional span of π(π + 1)/p (and, in fact, 
mp(x) = x +1), and we get E/A[π] ∼= A/p and disc(E) = p. Since we also have disc(E) =
FittA(B/E)2 disc(B), we conclude that B = E .

Because H = 1, from equation (1) we get F̃p̃ = Fp; in particular, ̃p is unramified over p. 
On the other hand, p ramifies in B because disc(B) = p. This implies that pB = p̃ ·P2

for some prime P �= p̃.
Next, we note that the conductor C of A[π] in B has the property that C ∩ A =

AnnA(B/A[π]). Thus, C ∩ A = p. This implies that C | p̃ ·P2. By the local maximality 
of A[π] at π, we know that p̃ � C. Therefore, C | P2. We also have the following equality 
(see [9, p. 78])

disc(A[π]) = NrF̃ /F (C) · disc(B).

Since NrF̃ /F (P) = p, we see that C = P2.

3. Kernel ideals: definitions

We keep the notation of the previous section but from now on we assume that E =
Endk(φ) is commutative. Moreover, we no longer insist that A = Fq[T ].
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Let I � E be a nonzero ideal. Let k{τ} I be the left ideal of k{τ} generated by the 
elements of I. Then k{τ} I is generated by a single element uI ∈ k{τ} since k{τ} has a 
right division algorithm. Thus, k{τ} I = k{τ}uI . It follows that

k{τ}uIφ(A) = k{τ} Iφ(A) = k{τ} I = k{τ}uI .

Therefore, uIφ(A)u−1
I ⊆ k{τ}. If we set ψa = uIφau

−1
I for all a ∈ A, then ψ is a Drinfeld 

module over k of rank r and uI : φ → ψ is an isogeny. We denote ψ = I ∗ φ.
As before, let D = E⊗AF be the endomorphism algebra of φ. Note that E = D∩k{τ}. 

Hence

k{τ} I ∩D ⊆ k{τ} ∩D = E .

This implies that

k{τ} I ∩D = (k{τ} I ∩D) ∩ E = k{τ} I ∩ (D ∩ E) = k{τ} I ∩ E . (2)

Definition 3.1. We say that I is a kernel ideal if (k{τ} I) ∩D = I. This definition is the 
one in [29, p. 167].

Next, define

φ[I] =
⋂
α∈I

ker(α),

where ker(α) denotes the kernel (as a group-scheme) of the twisted polynomial α ∈ k{τ}
acting on the additive group scheme Ga,k.

Lemma 3.2. We have φ[I] = ker(uI).

Proof. Suppose α ∈ I. Then α ∈ k{τ} I, so α = fuI . Thus, ker(uI) ⊆ ker(α). Since α is 
an arbitrary element of I, we get ker(uI) ⊆ φ[I]. Conversely, we can write

uI = f1α1 + · · · + fmαm,

for suitable f1, . . . , fm ∈ k{τ} and α1, . . . , αm ∈ I. This implies that φ[I] ⊆ ker(uI). �
Each ker(α), α ∈ I, is an E-module scheme, so φ[I] is an E-module scheme. The 

annihilator AnnE(φ[I]) of this module scheme is an ideal of E . It follows immediately 
from the definition that I ⊆ AnnE(φ[I]).

Definition 3.3. We say that I is a kernel ideal if I = AnnE(φ[I]). This definition is the 
analogue of the definition of this concept in the setting of abelian varieties; see [28, 
p. 533].
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Lemma 3.4. We have AnnE(φ[I]) = k{τ} I∩D, so Definitions 3.1 and 3.3 are equivalent.

Proof. Let J := k{τ} I ∩ D and J ′ := AnnE(φ[I]). Suppose u ∈ J . Then u ∈ E and 
u = wuI for some w ∈ k{τ}. But wuI annihilates ker(uI) = φ[I], so u ∈ J ′. This 
implies that J ⊆ J ′. Conversely, if u ∈ J ′, then u = wuI for some w ∈ k{τ}, by [23, 
Lemma 2.1.1]. Hence u ∈ k{τ}uI ∩ E = J , so J ′ ⊆ J . �

Let φ and ψ be two Drinfeld module over k of rank r. Let l be a prime not equal to 
p = charA(k). Let u : φ → ψ be an isogeny. Then u induces a surjective homomorphism 
φk̄

u−→ ψk̄ of A-modules with finite kernel, where the notation φk̄ means that the A-
module structure on k̄ is induced from φ : A → k{τ} and likewise for ψ. From this, we 
get the short exact sequence

0 −→ HomAl
(Fl/Al,

φk̄) −→ HomAl
(Fl/Al,

ψk̄) −→ Ext1Al
(Fl/Al, ker(u)l) −→ 0,

where ker(u)l denotes the l-primary part of ker(u) (this is an étale group scheme). Note 
that Tl(φ) := HomAl

(Fl/Al, φk̄) is the l-adic Tate module of φ and that

Ext1Al
(Fl/Al, ker(u)l) ∼= HomAl

(Al, ker(u)l) ∼= ker(u)l.

Hence, u induces an injective homomorphism

ul : Tl(φ) −→ Tl(ψ)

whose cokernel is isomorphic to ker(u)l. On the other hand, on Vl(φ) := Tl(φ) ⊗Al
Fl, ul

induces an isomorphism Vl(φ) ∼−→ Vl(ψ). Pulling back Tl(ψ) ⊆ Vl(ψ) via u−1
l

we get an 
Al-lattice u−1

l
Tl(ψ) in Vl(φ) which contains Tl(φ) and a short exact sequence

0 −→ Tl(φ) −→ u−1
l

Tl(ψ) −→ ker(u)l −→ 0. (3)

Following [23, (2.3.6)], we denote

Hl(φ) = HomAl
(Tl(φ), Al). (4)

Taking the Al-duals of (3), we obtain

0 −→ HomAl
(u−1

l
Tl(ψ), Al) −→ Hl(φ) −→ Ext1Al

(ker(u)l, Al) −→ 0.

Note that Ext1Al
(ker(u)l, Al) ∼= HomAl

(ker(u)l, Fl/Al) ∼= ker(u)l. Hence to the isogeny u

there corresponds a canonical sublattice of Hl(φ) whose cokernel is isomorphic to ker(u)l.
Now given a nonzero ideal I � E , we would like to describe the sublattice of Hl(φ)

corresponding to uI . Before doing so we recall an elementary result about the duals of 
intersections of lattices.
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Let R be a PID with field of fractions K. Let V = Kn. A lattice in V is the R-span of 
a basis of V , i.e., a lattice is a free R-submodule Λ ⊆ V of rank n such that ΛK = V . Fix 
a basis {e1, . . . , en} of V and define a symmetric K-bilinear pairing 〈·, ·〉 : V × V → K

by defining 〈ei, ej〉 = δij(= Kronecker symbol) and extending it bilinearly to V ×V . We 
identify V ∗ := HomK(V, K) with the linear functionals on V and take e∗i (v) = 〈ei, v〉 as 
a basis of V ∗. For a lattice Λ in V , the dual lattice Λ∗ ⊆ V ∗ is the lattice defined by

Λ∗ = {f ∈ V ∗ | f(λ) ∈ R for all λ ∈ Λ}.

If we identify V ∗ with V by mapping e∗i �→ ei for all 1 ≤ i ≤ n, then

Λ∗ = {v ∈ V | 〈v, λ〉 ∈ R for all λ ∈ Λ}.

Given two lattices Λ1, Λ2 in V , it is easy to check that

Λ1 + Λ2 = {λ1 + λ2 | λ1 ∈ Λ1, λ2 ∈ Λ2}

is a lattice, and so is

Λ1 ∩ Λ2 = {λ | λ ∈ Λ1, λ ∈ Λ2}.

Lemma 3.5. We have

(Λ1 ∩ Λ2)∗ = Λ∗
1 + Λ∗

2.

Proof. The proof is straightforward and is omitted. �
Now returning to uI , let α, β ∈ I be nonzero elements. The overlattice of Tl(φ) corre-

sponding to ker(α) ∩ker(β) is α−1Tl(φ) ∩β−1Tl(φ). The sublattice of Hl(φ) corresponding 
to ker(α)l is αHl(φ), so (α−1Tl(φ))∗ = αHl(φ). From the previous lemma, we conclude 
that the sublattice of Hl(φ) corresponding to ker(α) ∩ ker(β) is αHl(φ) + βHl(φ). Thus, 
the dual of u−1

I Tl(I ∗ φ) is IHl(φ) and we have proved:

Lemma 3.6. The sublattice of Hl(φ) corresponding to ker(uI)l is IHl(φ).

Let Ok be the ring of integers of the unramified extension Fk of Fp with residue field k. 
Let Hp(φ) be the Dieudonné module of φ as defined in [23, Sec. 2.5]. Recall that Hp(φ)
is a free Ok-module of rank r equipped with a τdeg(p)-linear map fφ,p : Hp(φ) → Hp(φ)
such that {

pHp(φ) ⊆ fφ,p(Hp(φ)) ⊆ Hp(φ),
dim (H (φ)/f (H (φ))) = 1.
k p φ,p p
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Let

H(φ) =
∏
l�A

Hl(φ),

where the product is over all primes of A, including p. According to [23, Lemma 2.6.2], 
there is a bijection between the kernels of isogenies u : φ → ψ and sublattices M =∏

l�A Ml ⊆ H(φ) such that Ml = Hl(φ) for all but finitely many primes l and Mp is a 
free Ok-submodule of rank r of Hp(φ) such that

{
pMp ⊆ fφ,p(Mp) ⊆ Mp,

dimk(Mp/fφ,p(Mp)) = 1.
(5)

The quotient 
∏

l�=p
(Hl(φ)/Ml) defines a unique finite étale k-subscheme Gp ⊆ Ga,k in 

φ(A)-modules. Similarly, the quotient Ok-module Hp(φ)/Mp endowed with the τdeg(p)-
linear map induced by fφ,p defines a unique k-subscheme Gp ⊆ Ga,k in φ(A)-modules. 
The quotient of φ by Gp ×Gp is the isogeny corresponding to M .

Proposition 3.7. The sublattice of H(φ) corresponding to uI is IH(φ) :=
∏

l
IHl(φ).

Proof. We already proved this for l �= p. On the other hand, Hp(φ) is the contravariant 
Dieudonné module, so uI(Hp(I ∗ φ)) is the submodule generated by all αHp(φ), α ∈ I. 
Hence uI(Hp(I ∗ φ)) = IHp(φ). �
Definition 3.8. Let I be a nonzero ideal of E . We say that I is a kernel ideal if for any 
ideal J � E the inclusion JH(φ) ⊆ IH(φ) implies J ⊆ I.

Lemma 3.9. Definitions 3.3 and 3.8 are equivalent.

Proof. Note that by the previous discussion, JH(φ) ⊆ IH(φ) if and only if φ[I] ⊆ φ[J ].
Suppose I is a kernel ideal in the sense of Definition 3.3 and φ[I] ⊆ φ[J ]. Then

J ⊆ AnnE φ[J ] ⊆ AnnE φ[I] = I.

Hence I is a kernel ideal in the sense of Definition 3.8.
Conversely, suppose that I is a kernel ideal in the sense of Definition 3.8. Denote 

J = AnnE φ[I]. We know that I ⊆ J , and we need to show that this is an equality. For 
any α ∈ J , ker(α) contains φ[I], so φ[I] ⊆ φ[J ]. This implies JH(φ) ⊆ IH(φ). Hence 
J ⊆ I. �

The next example shows that in general not every ideal of E is a kernel ideal.
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Example 3.10. As in the examples in Section 2, let A = Fq[T ] and t = γ(T ). Let q = 2, 
p = T 4 + T + 1, and n = d = 4. Set φT = t + t3τ2 + τ3. The minimal polynomial of π is 
given by

Mφ(x) = x3 + Tx2 + x + p.

We algorithmically compute, cf. [13], that an A-basis for E is given by e1, e2, e3, where

e1 = 1, e2 = π + 1, e3 = (π + 1)2

T + 1 .

We also compute that

e2e3 = e3e2 = (T + 1)3 + (T + 1)e3,

e2
2 = (T + 1)e3,

e2
3 = (T + 1)3 + (T + 1)2e2 + (T + 1)e3.

Let l = T + 1. We observe that an argument similar to the argument in [13, Example 
4.12] implies that El is not Gorenstein, cf. Definition 4.4.

Consider the ideal I = (e2, e3) in E . An arbitrary element of I is of the following form:

(a1 + a2e2 + a3e3)e2 + (b1 + b2e2 + b3e3)e3

= (a3 + b2 + b3)(T + 1)3 + (a1 + b3(T + 1)2)e2 + (b1 + (a3 + b2 + b3)(T + 1))e3,

where ai, bi ∈ A. Hence

I = A(T + 1)3 + Ae2 + Ae3.

In k{τ}, we have

e2 = 1 + τ4,

e3 = t3 + t2 + t + (t3 + t2 + 1)τ2 + (t3 + t)τ3 + (t3 + t2)τ4 + τ5.

These polynomials satisfy the equation

w = ue2 + ve3,

where

w := t3 + t + 1 + (t3 + t2)τ + (t + 1)τ2 + τ3,

u := (t3 + t2)2 + (t3 + t2)τ,

v := t3 + t2.
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We also have

φ(T+1)2 = (t2 + 1) + t3τ2 + (t2 + t + 1)τ3 + τ4 + tτ5 + τ6

= (t + (t2 + 1)τ + (t2 + t)τ2 + τ3)w.

Hence, (T + 1)2 ∈ k{τ}w ⊆ k{τ} I. But I ∩A = (T + 1)3A, so (T + 1)2 �∈ I. Thus, I is 
not a kernel ideal.

4. Kernel ideals: properties

We keep the notation and assumptions of the previous section. In particular, φ is a 
Drinfeld module over k such that E := Endk(φ) is commutative, and D := E ⊗A F .

The next lemma is the analogue of [28, Theorem 3.11].

Lemma 4.1. Let I and J be nonzero ideals in E.

(1) If I = Ju for some u ∈ D, then I ∗ φ ∼= J ∗ φ.
(2) If I ∗ φ ∼= J ∗ φ and I, J are kernel ideals, then I = Ju for some u ∈ D.

Proof. (1) Let k{τ} I = k{τ}uI and k{τ}J = k{τ}uJ . By definition, for any a ∈ A, 
(I ∗ φ)a = uIφau

−1
I and (J ∗ φ)a = uJφau

−1
J . Then

I ∗ φ ∼= J ∗ φ ⇐⇒ cuIφau
−1
I c−1 = uJφau

−1
J for some c ∈ k× and all a ∈ A,

⇐⇒ u−1
J cuI ∈ D

⇐⇒ cuI = uJu for some u ∈ D.

If I = Ju, then uI = uJu, so I ∗ φ ∼= J ∗ φ.
(2) Now assume that I ∗ φ ∼= J ∗ φ, or equivalently cuI = uJu. Then

k{τ} cuI = k{τ}uI = k{τ} I

and

k{τ}uJu = k{τ}Ju.

Note that k{τ}Ju ∩D = (k{τ}J ∩D)u, so if I and J are kernel ideals, then

Ju = (k{τ}J ∩D)u = k{τ}Ju ∩D = k{τ} I ∩ E = I. �
Let

OI := {g ∈ D | Ig ⊆ I} (6)

be the (right) order of I in D. The next lemma is the analogue of [28, Proposition 3.9].
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Lemma 4.2. Let I be a nonzero ideal in E and write k{τ} I = k{τ}uI with uI ∈ k{τ}.

(1) We have uIOIu
−1
I ⊆ Endk(I ∗ φ).

(2) If I is a kernel ideal, then uIOIu
−1
I = Endk(I ∗ φ).

Proof. (1) Let u ∈ OI . By definition, u ∈ D, so it commutes with φa in k(τ) for all 
a ∈ A. Therefore,

(uIuu
−1
I )(uIφau

−1
I ) = uIuφau

−1
I = uIφauu

−1
I = (uIφau

−1
I )(uIuu

−1
I ).

On the other hand, because u ∈ OI ,

k{τ}uIu = k{τ} Iu ⊆ k{τ} I = k{τ}uI .

Thus, k{τ}uIuu
−1
I ⊆ k{τ}, so uIuu

−1
I ∈ k{τ}. It follows that (uIuu

−1
I ) ∈ Endk(I ∗ φ). 

Hence uIOIu
−1
I ⊆ Endk(I ∗ φ).

(2) Now let w ∈ Endk(I ∗ φ). Then w ∈ k{τ} and w(uIφau
−1
I )w−1 = uIφau

−1
I . This 

implies that u−1
I wuI ∈ D. Then

k{τ} I(u−1
I wuI) = k{τ}uI(u−1

I wuI) = k{τ}wuI ⊆ k{τ}uI = k{τ} I

Assume I is a kernel ideal. Then k{τ} I ∩D = I and

(k{τ} I(u−1
I wuI)) ∩D = (k{τ} I ∩D)(u−1

I wuI) = I(u−1
I wuI),

where the first equality follows from the fact that u−1
I wuI ∈ D. We see that

I(u−1
I wuI) ⊆ I,

so u−1
I wuI ∈ OI . This proves that Endk(I ∗ φ) ⊆ uIOIu

−1
I , which combined with the 

reverse inclusion proved earlier implies that Endk(I ∗ φ) = uIOIu
−1
I . �

The next lemma is the analogue of [28, Theorem 3.15].

Lemma 4.3. Assume E is the maximal A-order in D. Then every nonzero ideal of E is a 
kernel ideal.

Proof. First, consider a nonzero principal ideal αE . Then k{τ}αE = k{τ}α. Suppose 
that u = gα ∈ k{τ}α and u ∈ D. Then g = uα−1 ∈ D and g ∈ k{τ}, so g ∈ E . 
Therefore, u ∈ αE . This implies that

αE ⊆ k{τ}α ∩D ⊆ αE ,

so (k{τ} (αE)) ∩D = αE , i.e., αE is a kernel ideal.
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Now let I � E be an arbitrary nonzero ideal. Since E is maximal, there is an ideal 
J � E such that IJ = αE is principal. Then

(k{τ} I ∩D)J ⊆ k{τ} IJ ∩D = IJ,

where the last equality follows from the earlier considered case of principal ideals. Now 
I ′ := k{τ} I ∩D is an ideal of E , and I ′J ⊆ IJ . Multiplying both sides by J−1 ⊆ D, we 
get I ′ ⊆ I. Since I ⊆ I ′, we find that I ′ = I, so I is a kernel ideal. �
Definition 4.4. We say that E is Gorenstein if El := E ⊗A Al is a Gorenstein ring for all 
primes l � A, i.e., HomAl

(El, Al) is a free El-module of rank 1; cf. [5].

Note that the maximal A-order in D is Gorenstein, so the next proposition implies 
Lemma 4.3.

Proposition 4.5. If E is Gorenstein then every nonzero ideal of E is a kernel ideal.

Proof. Let I and J be nonzero ideals of E such that JHl(φ) ⊆ IHl(φ). Assume l �= p. 
Because El is Gorenstein, Tl(φ) is a free El-module of rank 1; cf. [13, Theorem 4.9]. But 
then, again because El is Gorenstein, Hl(φ) = HomAl

(Tl(φ), Al) is also a free El-module 
of rank 1; cf. [13, Def. 4.8]. Hence, the inclusion JHl(φ) ⊆ IHl(φ) implies that Jl ⊆ Il, 
where Jl := J ⊗A Al and Il := I ⊗A Al.

At p we consider the decomposition

Hp(φ) = Hc
p(φ) ⊕Hét

p (φ) (7)

of the Dieudonné module into its connected component Hc
p(φ) and maximal étale quo-

tient Hét
p (φ). Let

Dp := D ⊗F Fp =
⊕
ν|p

Dν , (8)

where the sum is over the places of F̃ = D lying over p and Dν is the completion of D
at ν. There is a natural isomorphism (cf. [23, Theorem 2.5.6])

Ep � End(Hp(φ)),

where End(Hp(φ)) denotes the ring of endomorphisms of Hp(φ) compatible with the ac-
tion of the Frobenius fφ,p. By [23, Corollary 2.5.8], the splitting (8) induces a compatible 
splitting Ep = Ep̃ ⊕ E ′

p such that

Ep̃ � End(Hc
p(φ)), (9)

E ′
p � End(Hét

p (φ)) � EndAp[Gk](Tp(φ)). (10)
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Here Ep̃ is the completion of E in Bp̃, and E ′
p = ⊕jEj is a direct sum of finitely many local 

rings corresponding to places ν �= p̃ lying over p, and Tp(φ) = lim←−−φ[pn](k̄) denotes the p-
adic Tate module of φ. By [29, Corollary, p. 164] we find that Ep̃ = Bp̃ is maximal, hence 
a DVR, which implies that Hc

p(φ) is a free Ep̃-module. Further, since E ′
p is Gorenstein 

by assumption, one can apply the argument in the proof of [13, Theorem 4.9] to (10)
to conclude that Hét

p (φ) is a free E ′
p-module. Combining these statements yields that 

JHp(φ) ⊆ IHp(φ) also implies that Jp ⊆ Ip.
Finally, consider Il as an Al-submodule of D⊗F Fl for any prime l including p. Then

J =
⋂
l

(D ∩ Jl) ⊆
⋂
l

(D ∩ Il) = I.

Hence I is a kernel ideal by Definition 3.8. �
5. Endomorphism rings and ideal actions

We keep the notation and assumptions of the previous section. In particular, φ is a 
Drinfeld module over k of rank r such that E = Endk(φ) is commutative.

Given an A-order R in F̃ = D = E ⊗A F and a prime l �A, we denote Rl = R⊗A Al. 
Also, given a prime ν of B, we denote by Bν the completion of B at ν and by Rν the 
completion of R in Bν .

The following result is modeled on [28, Porism 4.3].

Proposition 5.1. Let R be an A-order in D containing π. Then there is a Drinfeld mod-
ule ψ in the isogeny class of φ such that Endk(ψ) = R if and only if R is locally maximal 
at π.

Proof. This is proved in [4, Theorem 1.5]. We present a slightly different argument.
If R is the endomorphism ring of a Drinfeld module isogenous to φ, then R contains π

and is locally maximal at π by [29, Corollary, p. 164].
Conversely, assume R is locally maximal at π. It is enough to show that there is a 

Drinfeld module ψ in the isogeny class of φ such that Endk(ψ)l = Rl for all the primes l
of A.

Pick any Drinfeld module φ0 in the isogeny class. For any l �= p, it follows from 
our assumptions that the rational Tate module Vl(φ0) is free of rank 1 over Dl. It 
therefore contains lattices L with any order OL = {x ∈ D : xL ⊆ L} (cf. (6)), and, 
identifying Vl(φ0) � Dl, we see that such a lattice is Galois invariant if and only if its 
order contains π.

For any prime l �= p, we view both Endk(φ0)l = Endk(φ0) ⊗ Al � EndAl[Gk](Tl(φ0))
and Rl as lattices in Vl(φ0). Hence, both Endk(φ0) and R are maximal at all but finitely 
many primes l. In particular, there exist only finitely many primes, l1, . . . , ln say, at 
which Endk(φ0)l �= Rl.
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The lattice Rl1 has order {x ∈ D : xRl1 ⊆ Rl1} = Rl1 , and so does its dual R∗
l1

�
Rl1 . As in (4), let Hl1(φ0) denote the dual of Tl1(φ0) and consider the intersection 
Hl1(φ0) ∩ R∗

l1
. This is an order contained in R∗

l1
and we consider the Fitting ideal χ :=

FittA(R∗
l1
/(Hl1(φ0) ∩R∗

l1
)), which is a product of nonzero A-ideals. Then

χ ·R∗
l1
⊆ Hl1(φ0) ∩R∗

l1
⊆ Hl1(φ0)

by definition. So we have obtained an integral lattice Ll1 := χ · R∗
l1

inside Hl1(φ0), or 
equivalently, a lattice in Vl1(φ0) containing Tl1(φ0), with order

{x ∈ D : xχR∗
l1
⊆ χR∗

l1
} = {x ∈ D : xR∗

l1
⊆ R∗

l1
} = Rl.

Similar constructions yield sublattices Lli of Hli(φ0) for all i = 2, . . . , n. At all other l �= p

we set Ll = Hl(φ0).
At p, write Dp = ⊕ν|pDν = Dp̃ ⊕

(
⊕ν �=p̃Dν

)
=: Dp̃ ⊕ D′

p, cf. (8). In this case, the 
rational Dieudonné module Hét

p (φ0) ⊗ Fp = ⊕ν �=p̃(Hp(φ0) ⊗ Fp)ν is free over D′
p, where 

each summand (Hp(φ0) ⊗ Fp)ν is free over Dν , and therefore contains lattices with any 
order. Comparing End(φ0)ν and Rν at each ν �= p̃ over p as lattices in Dν , and adjusting 
the former if necessary via an analogous procedure to that in the previous paragraph, 
yields a sublattice ⊕ν �=p̃Lν of Hét

p (φ0). At p̃, we set Lp̃ = Hc
p(φ0).

By the dictionary between sublattices of H(φ0) =
∏

l�A Hl(φ0) and isogenies, the 
quotient of 

∏
l�=p

Hl(φ0) ×Hp(φ0) by 
∏

l�=p
Ll ×

∏
ν|p Lν yields a finite A-invariant sub-

group G; cf. [23, Section 2.6]. The quotient φ0/G in turn yields a Drinfeld module ψ
isogenous to φ0, for which Endk(ψ)l = Rl at all places l �= p of A, and Endk(ψ)ν = Rν

at all primes ν|p of F̃ with ν �= p̃. Finally, by [29, Corollary, p. 164], Endk(ψ) is locally 
maximal at π, so we also have Endk(ψ)p̃ = Rp̃. �
Remark 5.2.

(1) Proposition 5.1 implies that if A[π] is locally maximal at π, then any order between 
(and including) A[π] and the maximal order B of F (π) appears as an endomorphism 
ring of a Drinfeld module isogenous to φ.

(2) The problem of describing endomorphism rings of Drinfeld modules has been con-
sidered by several authors, see e.g. [14,29] and in particular [1], in which it is shown 
that for a fixed finite extension L/Fq, any subring U of L{τ} containing Fq[π] such 
that the commutator of its center equals U is the endomorphism ring of some Drin-
feld module over L. We should mention a caveat for this last result, which is not 
explicitly stated in [1]: the A-characteristic of L is not fixed and the construction of 
a Drinfeld module φ with EndL(φ) = U involves an appropriate choice of γ : A → L. 
In our setting, the A-characteristic of k is fixed from the beginning.

(3) Explicit algorithms to compute endomorphism rings were developed in [12] for Drin-
feld Fq[T ]-modules of rank 2 over Fp and in [13] for any Drinfeld Fq[T ]-module with 
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commutative endomorphism algebra; in [21], the existence of an effective general 
algorithm is shown.

Corollary 5.3. The ring A[π] is the endomorphism ring of a Drinfeld module isogenous 
to φ if and only if either φ is ordinary or k = Fp.

Proof. By Proposition 5.1, A[π] is the endomorphism ring of a Drinfeld module in the 
isogeny class of φ if and only if A[π] is locally maximal at π. On the other hand, Corol-
lary 2.9 states that A[π] is locally maximal at π if and only if either φ is ordinary or 
k = Fp. �

We saw in Section 3 that, given a Drinfeld module φ over k and an ideal I � E =
Endk(φ), we can construct an isogenous Drinfeld module ψ = I ∗φ, which is determined 
by ψa = uIφau

−1
I for all a ∈ A and which satisfies Endk(ψ) ⊇ uIOIu

−1
I � OI ⊇ E by 

Lemma 4.2.(2).

Theorem 5.4. Consider the isogeny class of a Drinfeld module φ over k with commutative 
endomorphism algebra.

(1) The map I �→ I ∗ φ defines an action of the monoid of fractional ideals of E up 
to linear equivalence on the set of isomorphism classes of Drinfeld modules in the 
isogeny class of φ whose endomorphism ring is the order of an E-ideal (and hence 
an overorder of E).

(2) Upon restricting to kernel ideals, the action is free.
(3) If E is Gorenstein, then the action is also transitive on the set of all Drinfeld modules 

whose endomorphism ring is the order of an E-ideal. In other words, if E is Goren-
stein, then every submodule M of H(φ) is of the form IH(φ) for some nonzero ideal 
I � E.

Proof. (1) By Lemma 4.1.(1), we may consider the fractional ideals of E up to linear 
equivalence. The trivial ideal I = E , considered as a k{τ}-ideal, is generated by the 
trivial element, so E ∗ φ = φ for any φ. For two ideals I, J it follows from the definition 
and commutativity that (I · J) ∗ φ = I ∗ (J ∗ φ). As remarked above, for any ideal I, the 
Drinfeld modules φ and I ∗ φ are isogenous via the generator uI of k{τ}I.
(2) This follows from Lemma 4.1.(2).
(3) The proof is inspired by [28, Proofs of Theorem 4.5 and Theorem 5.1]. Suppose 
that φ and ψ are isogenous and that R := Endk(ψ) is the order of an E-ideal, i.e., 
R � OI for some ideal I � E . We may write ψ = φ/G where the finite subgroup scheme 
G is the kernel of the isogeny. We want to show that ψ ∼= I ∗ φ. Since I is a kernel 
ideal by Proposition 4.5, by Proposition 3.7 this amounts to showing that the sublattice 
corresponding to the isogeny φ → ψ with kernel G is IH(φ), up to linear equivalence. 
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(Note also that the Drinfeld module I ∗φ indeed has endomorphism ring uIOIu
−1
I � OI

by Lemma 4.2.(2).)
By the dictionary between lattices and isogenies given above, the kernel G gives rise 

to a sublattice of Nl ⊆ Hl(φ) such that Hl(φ)/Nl � Gl for each l �= p and a sublattice 
Np ⊆ Hp(φ) satisfying (5) such that Hp(φ)/Np � Gp. The lattice Np in Hp(φ) is both 
a free left Ok-module and a right Ep-module; by the splittings of Ep = Ep̃ ⊕ E ′

p and 
Hp(φ) = Hc

p(φ) ⊕ Hét
p (φ) in (7) and their compatibility in (9) and (10), we must have 

that Np = Np̃ ⊕ N ′
p splits as well, where Np̃ is a sublattice of Hc

p(φ) and an Ok ⊗ Ep̃-
module, and N ′

p is a sublattice of Hét
p (φ) and an Ok ⊗ E ′

p-module.
As remarked in the proof of Proposition 4.5, the Gorenstein property implies that 

Hl(φ) is free over El of rank 1 for all l �= p, and Hét
p (φ) is free over E ′

p. Hence, any 
sublattice of Hl(φ) is of the form Il ·Hl(φ) for some local ideal Il � El, and any sublattice 
of Hét

p (φ) is of the form I ′p · Hét
p (φ) for some ideal I ′p � E ′

p. Since G is finite, we know 
that Il = El for all but finitely many l; note also that there are only finitely many ν �= p̃

over p that contribute to I ′p. Recall that Ep̃ is maximal by [29, Corollary, p. 164], hence 
a PID, so again any sublattice of Hc

p(φ) = (Hp(φ))p̃ is of the form Ip̃ ·Hc
p(φ) for a local 

principal ideal Ip̃ � Ep̃. Note that at all places we may scale the ideal generators to lie 
in the local endomorphism ring. We conclude that

Np =
(
Ip̃ ·Hc

p(φ)
)
⊕

(
I ′p ·Hét

p (φ)
)

= Ip ·Hp(φ)

for some local ideal Ip = Ip̃ ⊕ I ′p of Ep.
These local ideals Ip and Il for all l �= p, i.e., local integral lattices, are the localizations 

of a global lattice (again since Il = El for all but finitely many l), which is closed under 
the action of E since it is so everywhere locally by construction. Hence, it is a global 
ideal I, as we had to show. �
Corollary 5.5. Suppose that E = A[π] (so that either φ is ordinary or k = Fp, by 
Lemma 5.3). Then the action I �→ I ∗ φ of the monoid of fractional ideals of A[π] is 
free and transitive on the isomorphism classes in the isogeny class of φ.

Proof. Since we consider the fractional ideals up to linear equivalence, we may without 
loss of generality consider only integral A[π]-ideals. If El is generated over Al by one 
element, then El is Gorenstein; cf. [27, p. 329]. Thus, A[π] is Gorenstein, so every A[π]-
ideal is a kernel ideal by Proposition 4.5. The statement now follows from Theorem 5.4
since every endomorphism ring is an overorder of A[π]; note that all such overorders 
occur as endomorphism rings by Proposition 5.1. �
Remark 5.6.

(1) The ideal action already appears in [18, Section 3] in a slightly different setting: fix an 
A-order O and consider the Picard group Pic(O), i.e., the quotient group of invertible 



404 V. Karemaker et al. / Journal of Algebra 644 (2024) 381–410
O-ideals modulo principal ideals. Hayes shows that Pic(O) acts on the isomorphism 
classes of Drinfeld modules whose endomorphism ring contains O. Invertible O-
ideals are proper and therefore have order O; so this statement is consistent with 
the statement Endk(I ∗ φ) ⊇ uIOIu

−1
I

∼= OI which we prove in Lemma 4.2.
(2) It follows from Theorem 5.4 that the number of isomorphism classes in the isogeny 

class is bounded below by the sum of the class numbers of the overorders of E and 
that equality holds if E is minimal and Bass, so that every overorder is Gorenstein. 
For rank 2 Drinfeld modules, this result can also be found in [15, §6] where the 
class numbers are given as products involving Dirichlet characters. In higher rank, 
analogous expressions for the class numbers of the orders in D could be given.

6. Algorithms

In this section, we describe three algorithms which together compute representatives 
of each isomorphism class within the isogeny class of some Drinfeld module φ : A →
k{τ} whose endomorphism ring we assume to be A[π]. While these algorithms will work 
for general A, our code written in Magma [6] implementing the algorithms works for 
the case A = Fq[T ]. The code is publicly available at https://github .com /JeffKaten /
DrinfeldModules [19]. At the end of the section, an example is given for which the 
calculations are done by a computer.

The first algorithm is based on the work of Klüners and Pauli [20], who describe 
a method for computing the Picard group of an order in a global field. The second 
algorithm is based on the work of Marseglia [24], who describes a way of extending the 
computation of the Picard groups of each overorder of some fixed order O to the full 
ideal class monoid of O. The third algorithm takes the representatives for the elements 
of the ideal class monoid ICM(A[π]) and uses the built-in Magma functions for right 
division and greatest common right divisors in twisted polynomial rings to calculate uI

and I ∗φ for each I ∈ ICM(A[π]) in order to generate a list of unique representatives for 
the isomorphism classes within the isogeny class of φ by way of Corollary 5.5.

Algorithm 1. Computing the Picard group of an order.

Starting with an A-basis for an order O, we use the built-in Magma functions for 
computing the maximal order B, the class group Cl(B) of B, the unit group B∗, and 
the conductor F of O in B. Then there is an exact sequence

1 −→ O∗ −→ B∗ −→ (B/F)∗

(O/F)∗ −→ Pic(O) −→ Cl(B) −→ 1.

If we then compute representatives for the elements of (B/F)∗
(O/F)∗ , we can build a list of 

representatives for the elements of Pic(O) using the above sequence of finite abelian 
groups. That is, we use the following algorithm:

https://github.com/JeffKaten/DrinfeldModules
https://github.com/JeffKaten/DrinfeldModules
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Step 1: Calculate a list of representatives in B for (B/F)∗
(O/F)∗ using the method described 

in [20].
Step 2: Let f : B∗ → (B/F)∗

(O/F)∗ be the above map. Compute a sublist L0 of representatives 
for (B/F)∗

(O/F)∗ modulo Im(f).
Step 3: Compute L1 := {lB ∩ O|l ∈ L0}.
Step 4: Compute L2 := {I ∩ O|I ∈ Cl(B)}.
Step 5: Output L3 := {I1I2|I1 ∈ L1, I2 ∈ L2}.

Algorithm 2. Computing the ideal class monoid of A[π].

Given two fractional ideals I1, I2 of an overorder O, we denote by (I1 : I2) the ideal 
quotient {x ∈ B : xI2 ⊆ I1}. Then for a single fractional ideal I it can be shown that 
the quotient (I : I) is closed under multiplication, and we call (I : I) the multiplicator 
ring of I. Simple algorithms which take as input an A-basis for each of two fractional 
ideals and output their ideal quotient are known and built into Magma.

Fix two fractional ideals I1 and I2 of A[π]. As in [24], we say that I1 is weakly equivalent
to I2 if the multiplicator ring of I1 and the multiplicator ring of I2 are equal to the same 
order O, and there exists an invertible fractional ideal L of O such that I2 = LI1. It 
is proved in [24, Proposition 4.1] that I1 and I2 are weakly equivalent if and only if 
1 ∈ (I1 : I2)(I2 : I1).

For each overorder O of A[π], we denote by WO(A[π]) the set of weak equivalence 
classes of fractional ideals whose multiplicator rings are O. Finally, define ICMO(A[π])
to be the subset consisting of those ideal classes whose multiplicator ring is O,

ICMO(A[π]) := {[I] ∈ ICM : (I : I) = O}.

Then,

ICM(A[π]) =� ICMO(A[π]).

As in [24, Theorem 4.6], it can be shown that if we have lists of unique representatives

WO(A[π]) = {[I1], . . . , [Is]} and Pic(O) = {[J1], . . . , [Jv]}

then

ICM(A[π]) = {IiJj |1 ≤ i ≤ s, 1 ≤ j ≤ v}.

This leads to following algorithm, which computes a list of unique representatives for 
ICM(A[π]).

Step 1: Calculate the overorders of A[π]. See [24, Section 6, Algorithm 1].
Step 2: For each overorder O, calculate a list L1(O) of unique representatives for 
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WO(A[π]) using the method described in [24, Section 5].
Step 3: For each overorder O, calculate a list L2(O) of unique representatives for Pic(O)
using Algorithm 1.
Step 4: For each overorder calculate ICMO(A[π]) = {IJ |I ∈ L1(O), J ∈ L2(O).
Step 5: Output � ICMO.

Algorithm 3. Computing the isomorphism classes of the isogeny class of φ.

Fix a Drinfeld module φ with Endk(φ) = A[π]. We use the following algorithm to 
compute a list {ψT } defining unique representatives {[ψ]} for the isomorphism classes 
within the isogeny class of φ.

Step 1: Compute a list L of unique representatives of ideals in ICM(A[π]) using Algo-
rithm 2. We may scale by an appropriate element of A[π] if necessary to make each 
fractional ideal integral.
Step 2: For each I ∈ L, embed the basis elements of I into k{τ} using the map φ, and 
compute uI by taking the greatest common right divisor of these elements. A function 
for computing greatest common right divisors of twisted polynomials (the classical Eu-
clidean algorithm) is built into Magma.
Step 3: For each I ∈ L, compute the polynomial I ∗ φ = uIφTu

−1
I . Multiplication and 

right division of twisted polynomials are built into Magma.
Step 4: Output the list {I ∗ φT |I ∈ L}.

Example 6.1. Let A = Fq[T ], q = 2, k = F4, p = T . Fix α ∈ k \ Fq. Let φ1 : A → k{τ}
be the Drinfeld module of rank 7 given by (φ1)T = ατ + τ2 + τ7. The height of φ1
is 1, i.e., it is ordinary. The minimal polynomial of π = τ2 over A is given by m(x) =
x7 +x4 +x2 +x +T 2, which has discriminant T 4(T +1)8. The endomorphism ring of φ1
is A[π], and the maximal order in F (π) containing A is

B = A

[
π6 + π5 + π4 + π

T
,
π5 + π4 + 1

T + 1

]
.

Moreover,

B/A[π] ∼= A

T
× A

T + 1 × A

T + 1 .

We compute that there are exactly 4 overorders of A[π], given by

O1 = A[π], O2 = A

[
π,

π6 + π5 + π4 + π

T

]
, O3 = A

[
π,

π5 + π4 + 1
T + 1

]
, O4 = B.

In this case, Cl(B) = Pic(O4) and the unit group of each overorder is trivial. We then 
compute the conductors Fi, 1 ≤ i ≤ 4 and see the following results as we calculate the 
Picard group of each of these orders.
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Table 1
Ideal classes of A[π].

I uI I ∗ φ1

(1) 1 φ1
(T, π) τ φ2
(T 2 + T, π3 + 1) α + τ3 φ3
(T 2, π2 + T + 1) (α + 1) + (α + 1)τ + τ3 φ4
(T, π4 + π2 + π + 1) 1 + ατ2 + τ3 + τ4 φ5
(T + 1, π3 + π + 1) 1 + (α + 1)τ + τ2 + τ3 φ6
(T, π2 + 1) (α + 1) + τ + τ2 φ7
(T 2 + T, π3 + π2 + π) τ + ατ2 + τ3 φ8
(T 2, π2 + π + T ) (α + 1)τ + (α + 1)τ2 + τ3 φ9
(T, π6 + π5 + π4 + π) (α + 1)τ + τ2 + ατ3 + τ4 + ατ5 + τ6 φ10
(T, π3 + π2 + 1) (α + 1) + τ + ατ2 + τ3 φ11
(T 2, π + T + 1) α + ατ + τ2 φ12
(T + 1, π5 + π4 + 1) 1 + τ + (α + 1)τ2 + (α + 1)τ4 + τ5 φ13
(T, π4 + π3 + π) ατ + τ2 + (α + 1)τ3 + τ4 φ14
(T, π2 + π) (α + 1)τ + τ2 φ15

# (B/F1)∗

(O1/F1)∗
= 8 = #Pic(O1);

# (B/F2)∗

(O2/F2)∗
= 4 = #Pic(O2);

# (B/F3)∗

(O3/F3)∗
= 2 = #Pic(O3);

# (B/F4)∗

(O4/F4)∗
= 1 = #Pic(O4).

Next, we compute the weak equivalence classes of fractional ideals for each overorder, 
and see they are all trivial (hence A[π] is Bass, see [24, Proposition 3.7]):

#WO1(A[π]) = #WO2(A[π]) = #WO3(A[π]) = #WO4(A[π]) = 1.

We list representatives of the 1 + 2 + 4 + 8 = 15 ideal classes Ij within ICM(A[π]) in 
Table 1 and the corresponding generator uIj of k{τ}Ij under the embedding φ1. We also 
list the 15 distinct isomorphism classes of Drinfeld modules isogenous to φ1; representa-
tives of these isomorphism classes are listed in Table 2, along with their endomorphism 
rings E .

7. Comparison with abelian varieties over finite fields

There are striking resemblances of the theory of Drinfeld modules over finite fields 
with the theory of abelian varieties over finite fields. Isogeny classes of such abelian vari-
eties are also determined by the minimal or characteristic polynomial of their Frobenius 
endomorphism π, and it is an important open problem to describe the isomorphism 
classes within a fixed isogeny class. Indeed, precisely when the varieties are ordinary or 
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Table 2
Isomorphism classes of Drinfeld modules isogenous to φ1.

φi (φi)T E
φ1 ατ + τ2 + τ7 O1
φ2 (α + 1)τ + τ2 + τ7 O1
φ3 τ + τ2 + τ4 + τ7 O4
φ4 (α + 1)τ + ατ3 + τ4 + τ5 + τ7 O1
φ5 ατ + ατ2 + ατ3 + τ4 + τ5 + τ7 O2
φ6 ατ + (α + 1)τ3 + τ4 + τ5 + τ7 O1
φ7 (α + 1)τ + τ2 + (α + 1)τ3 + τ4 + τ5 + τ7 O2
φ8 (α + 1)τ + ατ3 + τ6 + τ7 O3
φ9 τ + (α + 1)τ3 + ατ5 + τ6 + τ7 O1
φ10 τ + ατ3 + τ4 + ατ5 + τ6 + τ7 O2
φ11 (α + 1)τ + τ2 + (α + 1)τ3 + τ4 + ατ5 + τ6 + τ7 O1
φ12 τ + ατ3 + (α + 1)τ5 + τ6 + τ7 O1
φ13 ατ + (α + 1)τ3 + (α + 1)τ5 + τ6 + τ7 O3
φ14 ατ + τ2 + ατ3 + τ4 + (α + 1)τ5 + τ6 + τ7 O1
φ15 τ + (α + 1)τ3 + τ4 + (α + 1)τ5 + τ6 + τ7 O2

defined over the prime field Fp, there exist categorical equivalences between isomorphism 
classes of abelian varieties over Fq and certain Z[π, ̄π]-ideals, where π̄ = q/π is the dual 
of the Frobenius, also called the Verschiebung.

First, consider an isogeny class of simple ordinary abelian varieties over Fq determined 
by a Frobenius endomorphism π. It is known that any ordinary variety A/Fq admits 
a (Serre-Tate) canonical lifting Ã to the Witt vectors W = W (Fq), which may be 
embedded into C. In [10], Deligne shows that the functor A �→ H1(Ã⊗W C) induces an 
equivalence of categories between isomorphism classes in the isogeny class determined 
by π and free Z-modules of rank 2 dim(A) equipped with an endomorphism F acting 
as π and an endomorphism V such that FV = q playing the role of Verschiebung; 
these modules are often called Deligne modules. On the other hand, complex abelian 
varieties AC are determined by lattices via the equivalence AC �→ AC(C) ∼= Cg/Λ
induced from complex uniformization, and when AC has CM through a CM-type Φ, we 
may write Λ = Φ(I) for some fractional End(AC)-ideal I. In this way, we may associate 
a fractional ideal I to each ordinary abelian variety A/Fq, since each variety over Fq has 
CM and therefore so does its canonical lifting Ã. Linearly equivalent fractional ideals 
yield homothetic lattices and hence isomorphic abelian varieties, and homomorphisms 
between abelian varieties are described by quotient ideals. Put differently, fractional 
ideals up to linear equivalence act on the isomorphism classes in the ordinary isogeny 
class.

By comparison, it should follow with a similar proof that ordinary Drinfeld modules 
over k admit a canonical lifting to C∞ of A-characteristic zero. On the one hand, Drinfeld 
modules over C∞ admit analytic uniformization by lattices Λ ⊆ C∞ (where homothetic 
lattices describe isomorphic Drinfeld modules), which yields a bijection between lattices 
in C∞ and Drinfeld modules over C∞. On the other hand, the ideal action φ �→ I ∗φ may 
be defined for arbitrary Drinfeld modules over any A-field (i.e., of any characteristic). 
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Indeed, as alluded to above, the monoid of fractional ideals of an order O up to lin-
ear equivalence acts simply transitively on the isomorphism classes of Drinfeld modules 
over C∞ with CM by O. Ideals of E may be embedded in C∞ as lattices, and every 
lattice Λ ⊆ C∞ yields an ideal FittA(Λ/E)Λ � E . One can show that if uI : φ → I ∗ φ

is an isogeny and φ corresponds to the lattice Λ, then I ∗ φ corresponds to the lattice 
I−1Λ, where I−1 = (E : I). This shows that, as for abelian varieties, the ideal action for 
ordinary Drinfeld modules can equivalently be described in terms of lattices via analytic 
uniformization on the lifted modules.

Next, consider an isogeny class of simple abelian varieties over Fp, determined by a 
characteristic polynomial of π which does not have real roots, to ensure the endomor-
phism rings are all commutative. In [7], the authors show that such an isogeny class con-
tains an element Aw with minimal endomorphism ring, i.e., EndFp

(Aw) = Z[π, ̄π], which 
is Gorenstein. They then use this variety to show that the functor A �→ Hom(A, Aw)
induces a contravariant equivalence between isomorphism classes in the isogeny class and 
reflexive Z[π, ̄π]-modules, which are in turn equivalent to finite free Z-modules with an 
endomorphism F acting as π and an endomorphism V such that FV = p which plays 
the role of π̄. When the varieties are also ordinary, the authors also prove that their 
functor is equivalent to that of Deligne.

By comparison, for Drinfeld modules over k = Fp, the existence of an isomorphism 
class φw with minimal endomorphism ring Endk(φw) = A[π] is guaranteed by Corol-
lary 2.8 and Lemma 5.3. The functor φ �→ Homk(φ, φw) from isomorphism classes in the 
isogeny class of φw to reflexive A[π]-modules can be proven to be fully faithful by using 
Tate’s theorems for Drinfeld modules and mimicking the proof of fully faithfulness in [7, 
Theorem 25]. Essential surjectivity follows from the main result in [22], when we view 
an A[π]-module as an A-matrix with characteristic polynomial determined by that of π. 
Moreover, suppose that φ = I ∗ φw for some (necessarily kernel) ideal I � E = A[π]
and recall that φa = uI(φw)au−1

I for uI ∈ k{τ} with k{τ}I = k{τ}uI . Then, using that 
A[π] = Endk(φw) = {v ∈ k{τ} : v(φw)a = (φw)av for all a ∈ A}, we see that

Homk(φ, φw) = {u ∈ k{τ} : uφa = (φw)au for all a ∈ A}
= {u ∈ k{τ} : uuI(φw)a = (φw)auuI for all a ∈ A}
= {u ∈ k{τ} : uuI ∈ A[π]}
= k{τ}uI ∩A[π] = I,

where the last equality follows from the definition of a kernel ideal, see Definition 3.1
above and cf. Equation (2). This shows that the two constructions are in fact equivalent 
for Drinfeld modules.

Data availability

We have shared a link to our code on GitHub in the body of the paper and included 
the citation [19].



410 V. Karemaker et al. / Journal of Algebra 644 (2024) 381–410
References

[1] Bruno Anglès, On some subrings of Ore polynomials connected with finite Drinfeld modules, J. 
Algebra 181 (2) (1996) 507–522.

[2] Bruno Anglès, On some characteristic polynomials attached to finite Drinfeld modules, Manuscr. 
Math. 93 (3) (1997) 369–379.

[3] Sedric Nkotto Nkung Assong, Explicit description of isogeny and isomorphism classes of Drinfeld 
modules over finite field, arXiv e-prints, arXiv :2009 .02533, 2020.

[4] Sedric Nkotto Nkung Assong, Orders occurring as endomorphism ring of a Drinfeld module in some 
isogeny classes of Drinfeld modules of higher ranks, arXiv e-prints, arXiv :2009 .11578, 2020.

[5] Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963) 8–28.
[6] Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language, 

in: Computational Algebra and Number Theory, London, 1993, J. Symb. Comput. 24 (3–4) (1997) 
235–265.

[7] Tommaso Giorgio Centeleghe, Jakob Stix, Categories of abelian varieties over finite fields, I: Abelian 
varieties over Fp, Algebra Number Theory 9 (1) (2015) 225–265.

[8] Keith Conrad, The conductor ideal of an order, available at https://kconrad .math .uconn .edu /
blurbs/.

[9] Ilaria Del Corso, Roberto Dvornicich, Relations among discriminant, different, and conductor of an 
order, J. Algebra 224 (1) (2000) 77–90.

[10] Pierre Deligne, Variétés abéliennes ordinaires sur un corps fini, Invent. Math. 8 (1969) 238–243.
[11] Vladimir G. Drinfeld, Elliptic modules. II, Mat. Sb. (N.S.) 102(144) (2) (1977) 182–194, 325.
[12] Sumita Garai, Mihran Papikian, Endomorphism rings of reductions of Drinfeld modules, J. Number 

Theory 212 (2020) 18–39.
[13] Sumita Garai, Mihran Papikian, Computing endomorphism rings and Frobenius matrices of Drinfeld 

modules, J. Number Theory 237 (2022) 145–164.
[14] Ernst-Ulrich Gekeler, On finite Drinfeld modules, J. Algebra 141 (1) (1991) 187–203.
[15] Ernst-Ulrich Gekeler, Frobenius distributions of Drinfeld modules over finite fields, Trans. Am. 

Math. Soc. 360 (4) (2008) 1695–1721.
[16] Ernst-Ulrich Gekeler, Brian A. Snyder, Drinfeld modules over finite fields, in: Drinfeld Modules, 

Modular Schemes and Applications, Alden-Biesen, 1996, World Sci. Publ., River Edge, NJ, 1997, 
pp. 66–87.

[17] David Goss, Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer 
Grenzgebiete (3), vol. 35, Springer-Verlag, Berlin, 1996.

[18] David Hayes, Explicit class field theory in global function fields, in: Studies in Algebra and Num-
ber Theory, in: Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, 
pp. 173–217.

[19] Jeffrey Katen, DrinfeldModules, GitHub repository, available at https://github .com /JeffKaten /
DrinfeldModules, 2023.

[20] Jürgen Klüners, Sebastian Pauli, Computing residue class rings and Picard groups of orders, J. 
Algebra 292 (1) (2005) 47–64.

[21] Nikolas Kuhn, Richard Pink, Finding endomorphisms of Drinfeld modules, J. Number Theory 232 
(2022) 118–154.

[22] Claiborne Latimer, Cyrus C. MacDuffee, A correspondence between classes of ideals and classes of 
matrices, Ann. Math. (2) 34 (1933) 313–316.

[23] Gérard Laumon, Cohomology of Drinfeld Modular Varieties. Part I, Cambridge Studies in Advanced 
Mathematics, vol. 41, Cambridge University Press, Cambridge, 1996.

[24] Stefano Marseglia, Computing the ideal class monoid of an order, J. Lond. Math. Soc. (2) 101 (3) 
(2020) 984–1007.

[25] Mihran Papikian, Drinfeld Modules, Graduate Texts in Mathematics, vol. 296, Springer, Cham, 
2023.

[26] Jean-Pierre Serre, Local Fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New 
York-Berlin, 1979.

[27] Jacques Tilouine, Hecke algebras and the Gorenstein property, in: Modular Forms and Fermat’s 
Last Theorem, Boston, MA, 1995, Springer, New York, 1997, pp. 327–342.

[28] William C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér. (4) 2 (1969) 
521–560.

[29] Jiu-Kang Yu, Isogenies of Drinfeld modules over finite fields, J. Number Theory 54 (1) (1995) 
161–171.

http://refhub.elsevier.com/S0021-8693(24)00024-3/bib2FA76ADBB6D92527D3C42CB3E0A8A948s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib2FA76ADBB6D92527D3C42CB3E0A8A948s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3591C70074EEAC44E3A848C88773C5AEs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3591C70074EEAC44E3A848C88773C5AEs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib08A2E60F9CD44F12F43561D9D6D1F745s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib08A2E60F9CD44F12F43561D9D6D1F745s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibA4EBC04FB738368F125CB912311D76FCs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibA4EBC04FB738368F125CB912311D76FCs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibCA4103A5E6809C7E14EC7F4FCF676BB5s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib1B62E99F86D45E754E5E79D9FA9DFCDEs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib1B62E99F86D45E754E5E79D9FA9DFCDEs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib1B62E99F86D45E754E5E79D9FA9DFCDEs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib8EA4C9AC938645FF943AEB7A9C2BC060s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib8EA4C9AC938645FF943AEB7A9C2BC060s1
https://kconrad.math.uconn.edu/blurbs/
https://kconrad.math.uconn.edu/blurbs/
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib6E3FE2E758C0C32557A3C71C42DDC213s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib6E3FE2E758C0C32557A3C71C42DDC213s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib986F4E7F928CC7962E18323817568C89s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib95FF3601BAB46A08EBD93A12C9E727B4s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibAD2D8EE7D788DCF41F399818F639CB64s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibAD2D8EE7D788DCF41F399818F639CB64s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3F9231C6FC64DE0E379FFC637122E7EBs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3F9231C6FC64DE0E379FFC637122E7EBs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib6A3DE6FECEE9B18E8EC513078FEAC2A2s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3833395242C79D6B4D5B5EED53E415B1s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3833395242C79D6B4D5B5EED53E415B1s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib71A75A167C33C58BFB561764255C880As1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib71A75A167C33C58BFB561764255C880As1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib71A75A167C33C58BFB561764255C880As1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib48E0B5BAA53E7547CCF984C78906F45Fs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib48E0B5BAA53E7547CCF984C78906F45Fs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibBBB38CC97A1AE9F2BEAF89499DEEBEA6s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibBBB38CC97A1AE9F2BEAF89499DEEBEA6s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibBBB38CC97A1AE9F2BEAF89499DEEBEA6s1
https://github.com/JeffKaten/DrinfeldModules
https://github.com/JeffKaten/DrinfeldModules
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib43EDBCFD3B83AD8979298E776E7602B8s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib43EDBCFD3B83AD8979298E776E7602B8s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib18D975B9B2FF2E587A2542E20C6802BBs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib18D975B9B2FF2E587A2542E20C6802BBs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibDFD5B430BC4DB2C2836D0227AD9AC0C4s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibDFD5B430BC4DB2C2836D0227AD9AC0C4s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibC5BA9985C7EA4361AA89A87B24CE6708s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibC5BA9985C7EA4361AA89A87B24CE6708s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3138973458037571D03833D48FE8F031s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3138973458037571D03833D48FE8F031s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib2ECDA7A0252B442AC6ECF47462119F51s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib2ECDA7A0252B442AC6ECF47462119F51s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib523A56B81D7496052C016D99A038A8CFs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib523A56B81D7496052C016D99A038A8CFs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib05E2D29E337CE580521C84B946064BC1s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib05E2D29E337CE580521C84B946064BC1s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibF0E9DDCEC9B5E72F29E98DC292018B61s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bibF0E9DDCEC9B5E72F29E98DC292018B61s1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3CB648DFF5E446CCC6C67677256C43EEs1
http://refhub.elsevier.com/S0021-8693(24)00024-3/bib3CB648DFF5E446CCC6C67677256C43EEs1

	Isomorphism classes of Drinfeld modules over finite fields
	1 Introduction
	Acknowledgments

	2 Local maximality at π of the Frobenius order
	3 Kernel ideals: definitions
	4 Kernel ideals: properties
	5 Endomorphism rings and ideal actions
	6 Algorithms
	7 Comparison with abelian varieties over finite fields
	Data availability
	References


